A reproducible benchmark of resting-state fMRI denoising strategies using fMRIPrep and Nilearn

Jupyter Notebook Python Submitted 13 May 2023Published 19 June 2023
Technical screening

Moderator: @mathieuboudreau (all papers)
Screener: @agahkarakuzu (all reviews)

Authors

Hao-Ting Wang (0000-0003-4078-2038), Steven L. Meisler (0000-0002-8888-1572), Hanad Sharmarke, Natasha Clarke, François Paugam, Nicolas Gensollen (0000-0001-7199-9753), Christopher J. Markiewicz (0000-0002-6533-164X), Bertrand Thirion (0000-0001-5018-7895), Pierre Bellec (0000-0002-9111-0699)

Citation

Wang et al., (2023). A reproducible benchmark of resting-state fMRI denoising strategies using fMRIPrep and Nilearn. NeuroLibre Reproducible Preprints, 12, https://doi.org/10.55458/neurolibre.00012

@article{Wang2023, doi = {10.55458/neurolibre.00012}, url = {https://doi.org/10.55458/neurolibre.00012}, year = {2023}, publisher = {NeuroLibre}, pages = {12}, author = {Hao-Ting Wang and Steven L. Meisler and Hanad Sharmarke and Natasha Clarke and François Paugam and Nicolas Gensollen and Christopher J. Markiewicz and Bertrand Thirion and Pierre Bellec}, title = {A reproducible benchmark of resting-state fMRI denoising strategies using fMRIPrep and Nilearn}, journal = {NeuroLibre Reproducible Preprints} }
Copy citation string · Copy BibTeX  
Tags

reproducibility nilearn fMRIPrep nuisance regressor resting-state fMRI functional connectivity

Altmetrics
Markdown badge

 

License

Authors of NeuroLibre papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.